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Simulation of spherical powder sintering 
by surface diffusion* 

R. M. G E R M A N t ,  J. F. LATHROP 
Sandia Laboratories, Livermore, Cafifornia 94550, USA 

The surface diffusion-controlled sintering of monosized spheres is studied by a computer 
simulation process. The simulation is used to determine the variations in neck size and 
surface area as functions of both sintering time and powder packing density. Both 
morphology parameters are shown to be complex functions of the sintering time, 
contrary to numerous models. This work shows that the exponent method is not 
sufficient for identifying the dominant sintering mechanism. 

1. Introduction 
The sintering process is important to both the 
metallurgical and ceramic industries. Accordingly, 
considerable attention has been given to modelling 
the morphological changes accompanying sintering. 
The typical model experiment uses either mono- 
sized spheres or rods to study the neck growth 
kinetics. The analyses by Frenkel [1] and 
Kuczynski [2] provided the first successful 
theories for the initial neck growth kinetics in 
such model experiments. The assumptions in- 
herent in Kuczynski's treatment limit the model 
to the first stage of sintering before the growing 
necks begin to overlap (see Fig. 1). The Kuczynski 
kinetic equation for neck growth is 

(x/a) n ~-- C1 t, (1) 

where x/a is the neck radius divided by the particle 
radius (x/a < 0.3), n is the mechanism characteristic 
exponent, t is the isothermal time, and C1 is a 
constant incorporating temperature, particle size, 
material properties, and geometric constants. 
Several analyses [1-12] have derived various 
forms for Equation 1. Hence it is not surprising to 
learn that the n value is still ambiguous for a 
process such as surface diffusion. 

The present approach attempts to rectify the 
ambiguity associated with the neck growth rate for 
spheres that are sintering by means of a surface 
diffusion mechanism. The model is based on a 

numerical simulation of the capillarity induced 
morphology changes. Besides the neck growth 
problem, the loss in surface area is also determined 
for the sphere-sphere situation. Recent mor- 
phology modelling for sintering spheres [13, 14] 
and wires [15] has been extended to estimate the 
surface area reduction kinetics [16-19] .  This 
modelling has resulted in the equation 

AS~ ~ = C2t (2) 
lSo] 

where AS is the loss in surface area from the initial 
value of So, C2 is a constant, and 3  ̀is a mechanism 
characteristic exponent that is dependent on n. 
Unfortunately, an uncertainty in n results in a 
similar uncertainty in 3'. 

x = NECK RADIUS 

a = PARTICLE RADIUS 

p =  F ILLET RADIUS 

Figure 1 Model for the two sphere sintering problem. 
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To the experimentalist, Equation 2 is very 
useful because all sintering mechanisms produce 
a surface area reduction (unlike the case with 
shrinkage), and the measurements are far less 
tedious than neck size determinations. To establish 
the full value of Equation 2, it is necessary that 3' 
be determined precisely for each mechanism. The 
present work is intended to serve a multiple 
purpose in determining both n and 3' for surface 
diffusion-controlled sintering. 

2. Background 
Several different mass transport paths can initially 
contribute to neck growth and, in most instances, 
more than one path is active [20-22] .  Sintering 
which occurs by the action of two or more 
mechanisms complicates the analysis of model 
system data [11, 21-23] .  However, an even more 
fundamental complication is the uncertainty in the 
neck growth exponent n of Equation 1. In some 
instances (i.e., viscous flow, plastic flow, evapor- 
ation-condensation, volume diffusion adhesion, 
and grain boundary diffusion), the theoretical 
analyses are in reasonable agreement [24, 25]. 
One mechanism for which there is still considerable 
uncertainty in the assigned value of n is surface 
diffusion. 

The theoretical analyses by Kuczynski [2] and 
Rockland [10] give a value o fn  = 7. Alternatively, 
Pines [5], Nichols and Mullins [9] and Nichols 
[12] derive values near 6, while Cabrera [3] and 
Schwed [4] suggest n values of 3 or 5 are 
appropriate to sintering by surface diffusion. The 
determinations by Nichols and Mullins [9] and 
Nichols [12] were based on computer simulation 
experiments. One reason for their value of n = 6 
is that the simulation process gave undercutting of 
the sphere in the neck region. Such undercutting 
alters the curvature gradient from that assumed 
by Kuczynski and results in a lower exponent. 

The specific case of surface diffusion is experi- 
mentally important. Several situations have been 
reported wherein surface diffusion is the pre- 
dominant sintering mechanism. Indeed, it has 
been suggested that surface diffusion is the domi- 
nant initial stage transport mechanism for the 
sintering of most crystalline materials [9-13,  20]. 
It will be shown in the present work that the neck 
growth exponent for surfacediffusion controlled 
sintering is not constant. Thus, observation of 
exponents ranging between 5 and 7 is not par- 
ticularly representative of any one mechanism. 
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Hence, such theoretical uncertainty hinders 
unambiguous interpretation of such experimental 
data on the basis of just the neck growth exponent. 

In many instances sintering studies are 
approached by performing macroscopic compact 
shrinkage measurements. However, for the surface 
diffusion mechanism, densification is absent be- 
cause the surface acts as both the mass source and 
the sink. Thus, in those instances where surface 
diffusion is the dominant sintering mechanism, 
shrinkage techniques are not applicable. 

Computer simulations of various aspects of the 
sintering process have been reported by several 
authors [9, 12, 26 -32] .  Nichols and Mullins [9] 
simulated surface diffusion-controlled sintering of 
a line of spheres. They observed the exponent of n 
of Equation 1 to vary from 5.5 to 6.5 with in- 
creasing neck size. Nichols [2] similarly reported n 
to vary from 5.2 to 6.5 for the surface diffusion 
mechanism with the wire-wire geometry. At neck 
sizes between 0.3 and 0.6, the exponent ranges 
from 6.3 to 6.9. Other reports have covered the 
problems associated with pore rounding [31], 
pore migration [30], volume diffusion [27, 28], 
viscous flow [32] and nonisothermal shrinkage 
[29]. These calculations have attempted to in- 
crease the understanding of the sintering process 
by reconciling experimentalobservations to general 
kinetic laws. 

With respect to the present problem of under- 
standing the initial stage of surface diffusion- 
controlled sintering, the work of Nichols and 
Mullins [9] is most important. Based on the work 
of Mullins [33], they show that for a surface of 
revolution the time-dependent normal motion 
obeys the equation 

On 
~t (8/y)O/~s) [yOK/~s)l (3) 

where 3n is the outward normal motion travelled 
by a point on the surface in the time ~t, y is the 
distance from the axis of revolution, s is the arc 
length along the surface, K is the surface curvature, 
and B is defined as follows: 

B = Dso54/kT  (4) 

with D s equal to the surface self-diffusion co- 
efficient, a equal to the surface tension, 6 equal to 
the interatomic distance, and k T  having its usual 
meaning. For the initial stage of sintering, Nichols 
and Mullins [9] show that Equation 3 gives an 



approximate neck growth law as 

(x/a) 7 = 28Bt /a  4 (5) 

In their treatment, they generated a more exact 
solution to Equation 3 by a numerical finite dif- 
ference approach. 

One difficulty with such a simulation approach 
is its slow nature and hence susceptibility to 
cumulative error. Although volume conservation is 
a presumed aspect of such a solution, the results 
showed such not to be the case [34]. Thus, the 
simulation process had to be periodically inter- 
rupted to manually reinvoke volume conservation. 
Another problem with the Nichols and Mullins 
approach was that they formulated the finite 
difference problem in terms of arc length and 
tangent angle. King [27] has rejected this approach 
to the kinetic problem because of the cumulative 
errors and resulting drift in the overall sintering 
profiles. Indeed, our preliminary efforts with the 
solution techniques outlined by Nichols and 
Mullins met with similar difficulties. The alter- 
native solution [27] used for the present approach 
is to parameterize the coordinates of  a point on 
the surface in terms of a single variable. 

3. Model 
We begin by assuming that a finite set of points 
exist which describe the contour of a surface of 
revolution. The x, y coordinates of these m points 
are chosen such that the incremental arc lengths 
2~s between points are nearly equal. For the rn 
surface points, the coordinates can be para- 
meterized with respect to v where v takes on 
values from 1 to rn. This parameterization has the 
advantage of handling undercutting and gives easy 
interpolation of x and y. We then fit x (v) and y (v) 
such that dy/dx = 0 at v = 1 (at the neck). This 
presumes zero grain boundary energy at the particle 
interfaces. Furthermore, for the sake of symmetry 
dy/dx is held constant at v = m. The sylmnetry 
point corresponds to a position on the surface at 
a radial angle $ from the sphere centre [13]. 
Variable powder packings can be studied by 
adjusting the angle ~b. The sintering zone size as 
determined by ~b is dependent on the powder 
packing coordination Nc as follows: 

= cos -a ( 1 -  2/Ne) (6) 

At any point on the arc of length s, 

The unit outward normal at any point v is then 
given by 

( d s )  -1 ( -  dy ~? + dx ) 
5v ~ dv dvv J? (8) 

where 2 and ~ are the unit axis vectors. At any 
point v the principal radii of  curvature are 

y (v) ds/dv 
R 1 -- (9a) 

dx l dv 

and 

(ds/dv) 3 

R2 = (d2y /dv2) (dx /dv )_  (d2x/dv2)(dy/dv)  (9b) 

The curvature K = l /R1 + l /R2.  
The surface flux of atoms on an arbitrary surface 

is given as [33], 

Js = (B/~2)VsK (10) 

where VsK is the surface curvature gradient and g2 
is the atomic volume. For the area between two 
consecutive surface points, vl and v2, the volume 
accumulation is given as 

8ASh = (J181l--J2812)g28t (11) 

where 8A is the surface area in the interval, and 8n 
is the incremental outward motion of the surface. 
For a surface of revolution, 

8l 1 = 2try(v1) (12a) 

and 

812 = 2try(v2) (12b) 

Combining Equations 10 to 12, the normal motion 
with respect to time can then as expressed as 

8n 2gB 

8t 8A 

and 

[y (v2)VsK(vz)--y (Vl)VsK(pl )] (13) 

22 

8A = 2rr y (ds /dv)dv  (14) 
1 

Therefore, by representing y(v2) as Y2, etc., the 
normal motion is given approximately by 

~n B ( y :  VsK 2 - - y  1VsK1 ) 
12 2 ~t ys y (ds /dv )dv  (15) 

t 

It should be noted that in the limit as Vl and v 2 
approach each other Equation 15 is the same as 
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Equation 3. The solution to Equation 15 was 
achieved by a means of a numerical approach 
wherein for an arbitrary point on the surface desig- 
nated i, the curvatures are given as 

V~Ki-  112 

and 

K i --Ki- 1 
[(Yi--Yi-1) 2 + (xi--xi-a)2] u2 (16a) 

Ki+ 1 -- Ki 
VsKi+I/2 ~ [(Yi+l --Yi) 2 + (xi+l --xi)2] u2 (16b) 

Finally, the surface area between half intervals is 
given as 

i+ 1/2 

-1/2 y(ds/dv) dv 

1 [.Vi+ 1/2 ds/dv li+ u2 + Yi- u2 ds/dv ]i- i/2 ] (17) 

Thus, the normal motion 3n/Ot for the point i can 
be reasonably approximated as 

I 

6n[ ~ B(Yi+ll2VsKi+ll2 --Yi-il2VsKi-1/2) (18) 
i+ 112 

-~1 i f i- u2 y (ds/dv) dv 

By imposing symmetry arguments at p = 1 and 
v = m, it can be shown that 

~n[ = ByI+I/2VsKI+I/2 (19a) 
.1+ 1/2 ~ d s ' d v ' d v  ~-11 J1 Yt / ) 

~n] I = --Bym-lt2Vsgm-l/2 (19b) 

-~ m fmm_ li2Y(ds/dv)dv 

For the present simulations, the initial inter- 
particle neck size was preset at 0.01 [9, 12]. After 
finding 8n/St for every point on the surface, it is 
then necessary to select the appropriate time 
interval. The time interval was calculated such that 

a,Ss 
At - (20) 

Max (6n/6t li) 
i 

where a <  1 is a parameter selected to ensure 
stability. The determination of At then allows 
the surface to be shifted, where the change in 
surface is given by 

(21b) 

To calculate the new surface coordinate we use a 
low-order Runge-Kutta formulation 

xi  = xi -- At ~-~. \Os/Ov] (22a) 

On (Ox /Os ) 
JTi = Yi + At ~-7" \~-s/~vv] (22b) 

Using these approximate values xi, .~i at the next 
time, we recalculate 

a& oy, 
3t ' Os ' Os 

The new surface coordinates are then given by 

x'pew = 7 i + x ,  - -  A t  ~-[ [ 8 s l O P ] ]  (23a) 

= ~- i ~-  [~-s/~uJJ (23b) 

This approach allows a larger time step and 
smooths out the oscillations that occur when using 
the simple Euler procedure of 

x~ eW = x i + A t ' ~ i .  

After moving the surface to the new coordinates, a 
polynomial fit is performed. This surface contour 
is integrated to find the si values which are, in 
turn, used to interpolate the new coordinates such 
that ~s is approximately constant, thereby main- 
taining the simulation accuracy. Also several simu- 
lations were conducted with various arc spacings 
to determine the appropriate spacing which mini- 
mizes both the error and computational time. 

Convergence of this approach was tested by 
perturbing a sphere and observing its return to 
sphericity. The accuracy of the simulation was 
continually monitored by integrating the volume 
of revolution. Volume conservation was used to 
detect the onset of significant cumulative errors. 
All simulations were terminated when the volume 
loss or gain exceeded 1% of the original value. 
Stability in the simulation is partially governed 
by the value assigned to a in Equation 20. Several 
simulations were conducted with a range of a 
values to determine the maximum acceptable 
value of a. For these studies, a value of 0.8 proved 
to be acceptable. Furthermore, a test for stability 
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Figure 2 Neck profiles for two spheres sintering by a 
surface diffusion. 
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Figure 3 Enlarged early stage neck pro/ties for the two 
sphere simulation showing the sphere undercutting in the 
neck region. 
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Figure 4 Neck growth time dependence for N e = 1, 2, 
and 7. 

was possible through the curvature. It was observed 
that  comparison of the point-to-point curvatures 
gave early indications of  instability due to cumu- 
lative errors. Fortunately,  these errors occurred 
after appreciable neck growth, well beyond the 
initial stage of sintering where previous neck 
growth models have been applied. 

4. Results 
The computations were carried out on a CDC 6600 
digital computer  for interparticle coordinations 
ATe of  1, 2, and 7. The interparticle coordination 
of  1 represents two isolated spheres sintering 
together, while Are = 2 corresponds to a line of  
spheres. The coordination of 7 is typical of  a loose- 

packed bed of  spheres during the initial stage 
sintering [35, 36].  The coordination number is 
linked to the surface zone size contributing to 
initial neck growth by assuming 1/N e of the sphere 
contributes to each neck. For this analysis it is 
assumed that such isosintering zones can be re- 
presented by a spherical cone as described by 
Equation 6 [13]. 

The ability to monitor  continuously the volume 
provides a means of detecting cumulative com- 
putational errors. In all cases, the loss of  volume 
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Figure 5 Kinetics for the surface 
area reduction for spheres sintering 
by surface diffusion; packing co- 
ordinations of 1, 2, and 7 (dashed 
lines are estimated from N e = I 
behaviou~). 

Figure 6 Relation between the specific 
surface area reduction ~ / S  o and the neck 
size for sphere-sphere sintering by surface 
diffusion at packing coordinations of 1, 2, 
and 7. 
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conservation occurred after appreciable neck 
growth. The neck profiles for N e = 1 for x/a up 
to 0.7 are shown in Figs. 2 and 3. These simu- 
lations were all performed with both "B" and "a" 
set at unity. Undercutting of the sphere is apparent 
in these profiles. Qualitatively, it appears that the 
undercutting in the present simulation is less than 
that observed previously [9]. 

The time dependence of the neck growth for 
the three coordinations is shown in Fig. 4. The 
time units for the abscissa are effectively nor- 
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0.1 

NECK SIZE, x / a  

1.0 

malized with respect to the particle size and 
material constants by setting B = 1 and a = 1. The 
initial behaviour for all three packing coordinations 
are similar. Such similarity results from the 
essentially localized nature of  the initial neck 
growth. 

During the incipient sintering (x/a ~ 0.1), mass 
transport originates from the immediate region on 
the sphere around the neck. Thus, as shown by 
Fig. 4, the packing coordination is of little influ- 
ence on the neck growth rate. At extended time, 



the packing coordination influences the curvature 
gradient and thereby alters the neck growth 
kinetics. 

In a similar manner, the surface area reduction 
(zlS/So) kinetics are shown in Fig. 5. The dashed 
lines in Fig. 5 for N e = 7 and 12 are calculated 
from the N e = 1 data assuming that 2~S/So is pro- 
portional to N e. In the ATe = 7 case, the agreement 
between the two curves indicates that the early 
neck growth process occurs essentially indepen- 
dently of  powder packing. At the point where 
neighbouring neck effects begin to become signifi- 
cant, a deviation in the simulation result can be 
observed. The relation between surface area re- 
duction and neck growth is shown in Fig. 6 on a 
log- log  basis. For comparison, the predictions of  
the surface-transport morphology model [16] are 
included in Fig. 6. Also, the results of  Prochazka 
and Coble's [37] integration of  Nichols and 
Mullins results are shown in Fig. 6. The reduced 
degree of  surface area loss with neck growth as 
determined by simulation is due to undercutting. 
Undercutting reduced the local curvature gradient 
at the expense of  an increased surface area. The 
predicted slopes for log (2~S/So) versus log (x/a) at 
x/a = 0.2 are 1.80, 1.84, and 2.02 for Ne = 1, 2, 
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Figure 7 Dependence of n from Equation 1 and ~, from 
Equation 2 on the neck size powder coordination. 

and 7 respectively [16].  For comparison, the 
observed slopes in this study at x/a = 0.2 are 1.84, 
1.85, and 1.91 respectively. 

Based on the kinetic behaviours shown in Figs. 
4 and 5, the slopes have been extracted for a fit 
to Equations 1 and 2. The resulting exponents, n 
and 7, are shown as functions of  x/a and Ne in 
Fig. 7. The results reported by Nichols and Mullins 
[9] have been included in Fig. 7 for comparison. 

The predicted mean 3' values for N e = 1,2,  and 
7 are 3.89, 3.80, and 3.47 respectively, using n = 7 
[16].  The varying n and 3' values for the present 
results represent the effects of  undercutting and 
changing geometries [27].  The lower n values ob- 
served in the previous simulation study [9] are 
most probably due to the larger degree of  initial 
sphere undercutting resulting from the different 
numerical approach. An important point in this 
study is that the n values increase above 7 with 
x/a>0.25 for all coordinations. Furthermore, 
both studies show the n values are not constant for 
initial stage sintering of  spheres by surface dif- 
fusion. However, the present approach suggests n 
values of  ~ 7 are representative of  the initial stage. 
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Figure 8 Time to reach equivalent neck size ratios as a 
function of particle size, illustrating agreement with the 
a 4 dependence predicted by the Herring [38] sealing 
laws. 
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Three additional simulations were conducted to 
test for the particle size dependence. The Herring 
scaling law predicts a particle size dependence of 
a 4 for sintering controlled by surface diffusion 
[38]. This prediction is in agreement with the 
neck growth kinetic laws due to Kuczynski [2] 
and others [9, 10]. The times to reach various 
neck size ratios were determined for a = 1,2, and 
4. The resulting particle size dependence was 
determined to be a 4 , as illustrated in Fig. 8. 

5. Discussion 
The present numerical simulation results apply to 
the initial stage of sintering of monosized spheres. 
This sintering process is controlled by surface dif- 
fusion and occurs without densification. For a 
surface diffusion process, the present simulations 
give a best approximation to the neck growth 
behaviour as 

( x / a ) '  = 8 0 B t / a  4 (24) 

for the sphere-sphere problem. However, such an 
equation is an imprecise simplification of the 
behaviour during initial stage sintering. A similar 
approximation for the specific surface area re- 
duction rate can be expressed as 

( A S / S o )  3.s = l l O O B t / a  4 (25) 

for N e = 7. Equations 24 and 25 are approxi- 
mations, since as Fig. 7 shows, n and 3' are not 
constant. The dependence of n on x /a  is not new; 
King [27] showed that a rigorous solution to 
Kuczynski's original model gave a varying n for 
both surface and volume diffusion. Thus, the 
comparison of experimental data to the mathe- 
matical format of either Equations 1 or 2 must 
be performed with care. Traditionally, the identifi- 
cation of the dominant sintering mechanism is 
based on agreement with theoretically predicted n 
values. The simulation results for surface and 
volume diffusion suggest that a spectrum of n 
values can be expected in such experiments [9, 
12, 27].  Furthermore, the experimental possibility 
of multiple diffusion paths creates an even greater 
range of process exponents, generally resulting in 
lower n and 3' values than those applicable to a 
surface diffusion-controlled process. 

The differences in neck growth exponents 
between Equation 24 and Nichols and Mullins [9] 
is due to the undercutting differences. The degree 
of undercutting is sensitive to the numerical 
approach used in solving Equation 3. Undercutting 
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has been subdued in the present results by the 
particular numerical solution adopted for Equation 
3. The present approach gives better agreement 
with the modified catenoid model [19]. This 
model represents the minimum surface energy con- 
figuration for a given neck size which still main- 
tains the chemical potential gradients. The appear- 
ance of undercutting suggests that the curvature 
gradient and surface free energy are both con- 
currently acting on the sintering morphology 
during initial stage sintering [25]. The effect of 
undercutting on the surface area reduction rate is 
small. 

It is important to realize that the degree of 
undercutting and the neck growth rate exponent 
are interrelated. Both, in turn, are dependent on 
the finite difference formulation used in solving 
the surface diffusion sintering problem. 

The present simulation approach has the 
advantages of providing an interlinking of neck 
growth and surface area reduction while testing for 

accuracy through volume conservation. However, 
the approach is generally limited to the initial 
stage of sintering in which large curvature gradients 
are present. 

6. Conclusions 
For the case of the surface diffusion mechanism, 
the theoretical models for the neck growth rate 
during the initial stage of sintering are in disagree- 
ment. Computer simulation results suggest a 
varying neck growth exponent. However, during 
the initial sintering stage a value between 6 and 7 
can be expected for the neck growth kinetics. The 
differing simulation results represent the lower 
degree of undercutting due to the numerical 
solution techniques employed by the present 
authors. 
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